
Automatic Code Review for SmartThings application using Static Analysis
Janine Cassandra Son1 Byeong-Mo Chang2 Kwanghoon Choi3

1 2Division of Computer Science, Sookmyung Women’s University
3Dept. of Electronics and Computer Engineering, Chonnam National University

Abstract
SmartApps are IoT applications that run in the cloud through SmartThings hub and are bounded by the features available in the

SmartThings environment. SmartThings has provided documentation for the purpose of code review of SmartApps. Instead of manual
code review, violations of the specified rules can be detected automatically through static analysis tools. Automatic code review through
a rule-based static analysis tool can also be used to produce metrics to evaluate the characteristics of SmartApps. This study aims to
automate the code review process based on the specifications provided by SmartThings and express it as metrics for a measureable
evaluation of SmartApp characteristics.

1. Introduction
Interest in the Internet of Things (IoT) application

development is continuously growing along with the
development of smart homes, devices, and other automations.
IoT source code differs in certain ways from general program
source code [1]. SmartThings application, called SmartApp, in
particular has a different structure compared to regular
applications. The attributes unique to SmartApps and default
attributes of programming languages can be used to identify
metrics measureable through static analysis. The metrics are
developed based on the guidelines provided by SmartThings that
can be implemented using a rule-based static analysis tool.

This study aims to automate code review of SmartApps
through static analysis. Traditional code review process is
usually done manually by a team but studies conducted have
shown that this process can be automated using static analysis of
source code [2]. Although it cannot fully automate the code
review process because of certain limitations, it allows faster
and more efficient way of analyzing source codes compared to
manual code review. After all, code review and static analysis
tools both serve the same purpose: to detect errors and violations.

The rules provided in the SmartApp code review guidelines
can be implemented in CodeNarc1, which is a rule-based static
analysis tool for Groovy2. The number of violations for each
rule can be expressed as metrics, which can be used to evaluate
the characteristics unique to SmartApps.

1http://codenarc.sourceforge.net
2http://groovy-lang.org/

This system can be divided into two parts: static analysis
and evaluation tool. The static analysis information will be the
input to the evaluation tool, which will be developed.

In this paper, we designed and implemented a static
analysis tool of SmartApps for automated code review based on
CodeNarc. We also show some metrics from the analysis to
evaluate characteristics of SmartApps.

2. SmartApp Code Review Guidelines and Best Practices
SmartThings has provided documentation such as Code

Review Guidelines and Best Practices and they contain rules on
how to develop applications correctly for personal use or for
distribution. SmartApps are written using a restricted subset of
Groovy programming language [3]. The unique structure of
SmartApps implies that there are rules applicable to SmartApps
but not to general Groovy programs. Fig. 1 shows a typical
structure of a SmartApp.

Fig. 1. SmartApp structure

SmartThings

1 2 3

1 2

3

janineson.it@gmail.com chang@sookmyung.ac.kr kwanghoon.choi@jnu.ac.kr

2017년 한국소프트웨어종합학술대회 논문집

513

One of the use cases for smart applications is to
schedule a job to run on a specific schedule. Fig. 2 shows a
violation of a rule from code review guidelines and best
practices. Avoid chained runIn() calls involves the use of runIn()
method which executes a specified handler method after a given
number of seconds have elapsed. It states that chained runIn
calls must be avoided since it is prone to failure. When a
scheduled execution in handler() fails, it will not be able to
reschedule itself thus, causing the whole chain to collapse.
Instead, a predefined scheduling function such as
runEvery5Minutes(), must be used to specify a recurring
schedule [3].

Fig. 2. Sample rule violation – AvoidChainedRunInCall

However, not all of the guidelines can be implemented in
CodeNarc due to some limitations. For example, Use Groovy
truth correctly states that the code must be consistent with what
Groovy considers true and false. An example is “Empty strings
are considered false; non-empty strings are considered true”.
This rule is impossible to implement using static analysis since
we do not know exactly the intention of the programmer for
writing that code. Therefore, this type of rule is beyond the
capacity of static analysis because coordination with the
developer is needed in order to know the real purpose of the
code.

3. Characteristics of SmartApps
SmartApps possess some characteristics which make them

different from conventional programs. The metrics which we
will define can be categorized under these characteristics.

1) Sandboxed Groovy environment: SmartApps are
developed in a restricted form of Groovy which means that
creation of new classes or calling certain methods are not
allowed, among other restrictions. Also, it includes predefined
functions as part of the SmartThings standard environment. Most
of the necessary function calls for developing a smart application
have already been provided by SmartThings and they are
available in the documentation [3]. They can be invoked right
away as they are already built in with the framework.

2) Subscription model: The most common type of
SmartApp is an Event Handler Smart App. It operates using a
subscription model which allows devices to subscribe to some
Event and take action when the Event happens. Subscriptions are
declared in the predefined callbacks section and they invoke the
event handlers (see Fig. 1).

3) External system access (WebService and other APIs):
SmartApps may need to call external web services. WebService
SmartApps allow exposure to Web service endpoints and
requests from external applications using an authentication
service [4].

4) Default programming language characteristics: Since
SmartApps are written using Groovy, default attributes of the
Groovy programming language such as basic rules and style
conventions may also be applied to SmartApps.

4. Static Analysis using CodeNarc
Static analysis is closely related with code review or

inspection since they have the same purpose: to detect software
defects without executing it [2]. This study utilizes CodeNarc, a
static analysis tool for analyzing Groovy code that checks
violations based on over 300 defined rules. It is customizable with
available plugins that can run on major IDEs. However, CodeNarc
with its default rules is not suitable enough for SmartApps since
the latter has a different structure compared to general
applications. Therefore, new rules must be added to CodeNarc so
it will be appropriate for checking rule violations based on the
documentation by SmartThings.

Fig. 3. CodeNarc rule implementation for AvoidChainedRunInCall

We selected 38 out of 348 default CodeNarc rules and added
22 new rules based on the code review guidelines into CodeNarc.
For example, Fig. 3 shows the implementation of a new rule
AvoidChainedRunInCall. Since CodeNarc uses static analysis, it
relies heavily on Abstract Syntax Tree (AST) traversal to inspect
the code structure and check violations without having to run the
program [4].

Fig. 4. Sample CodeNarc report (excerpt)

Fig. 4 displays an excerpt of the HTML report generated by
CodeNarc after analyzing multiple SmartApp source codes at
once. The information generated from the report will be integrated

2017년 한국소프트웨어종합학술대회 논문집

514

into an evaluation tool which will be developed.

5. Metrics
The rules are converted into metrics for measuring source

code violations and other attributes. List 1 shows 20 out of 60
metrics both from SmartApp guidelines and CodeNarc default
rules. The CodeNarc default rules include basic and convention
rules for Groovy and also size and complexity rules. Fig. 5
shows the metrics categorized according to the SmartApp
characteristics discussed in Section 3.

A total of 60 SmartApp metrics can be used to evaluate
some quality attributes such as Reliability, Security, and
Maintainability. Even though this study does not involve the
proposal of a quality model, the metrics can still be used to
evaluate measureable quality characteristics of SmartApps. For
instance, the number of missing event handlers as shown in Fig.
5 can be used to measure reliability since the violation suggests
the code being prone to faults if a certain event handler is called
but was not defined at all. Another example is the hard-coded
SMS message violation count under the category external
system access. It suggests issues related to security since hard-
coded phone numbers put the system to risk if the value is wrong
and cannot be updated using the SmartApp preferences and
settings. The guideline suggests a safe and proper way to
implement it by using the contact input so it will be subjected to
validation and can be updated. In this way, we are able to show
that SmartApp quality characteristics can be evaluated through

List 1. SmartApp and CodeNarc metrics – 20 of 60 (excerpt)

expressing the rules into metrics which are taken from the output
of the automatic code review tool.

6. Conclusion and Future Work
This research proposes automatic code review using static

analysis, which can be used to evaluate the characteristics of
SmartApp source code. First, the code review guidelines for
SmartApps are implemented into rules for CodeNarc. Next,
metrics are defined to evaluate the characteristics unique to
SmartApps. Finally, static analysis of source code is performed
through CodeNarc where it generates an HTML report providing
details of the violations, source of error and priority level. The
information from the report can be used as the source or input to
the evaluation tool to be developed.

However, static analysis has some limitations. It cannot fully
automate the code review process since some rules need
coordination with the developer, making them impossible to be
implemented by checking the source code only. Although
limitations exist, it makes the process of code review way more
efficient than having to do it manually. In addition, the tool
developed was able to provide information regarding which
quality characteristics need to be improved in the system.

For the future work, a scoring system for each of the
characteristics – reliability, security, and maintainability, must
be developed in order to calculate and produce measureable
results. Determining the score rating for each of the attributes
allows quantifiable ways to measure the quality characteristics
of SmartApps.

7. References
[1] M. Kim, “A Quality Model for Evaluating IoT Applications”,
International Journal of Computer and Electrical Engineering,
2016.8.1.66-76, Feb. 2016.
[2] R. Hartog, Octopull: integrating Static Analysis with Code Reviews,
Dec. 2015.
[3] SmartThings, SmartThings Developer Documentation Release
latest, Jun. 2017
[4] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of
Emerging Smart Home Applications”, 2016 IEEE Symposium on
Security and Privacy, pp. 636-654, 2016.

Fig. 5. SmartApp metrics and quality attributes (excerpt)

2017년 한국소프트웨어종합학술대회 논문집

515

	Main
	Return

